Intervals
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 18740 | Accepted: 7042 |
Description
You are given n closed, integer intervals [ai, bi] and n integers c1, ..., cn. Write a program that: reads the number of intervals, their end points and integers c1, ..., cn from the standard input, computes the minimal size of a set Z of integers which has at least ci common elements with interval [ai, bi], for each i=1,2,...,n, writes the answer to the standard output.
Input
The first line of the input contains an integer n (1 <= n <= 50000) -- the number of intervals. The following n lines describe the intervals. The (i+1)-th line of the input contains three integers ai, bi and ci separated by single spaces and such that 0 <= ai <= bi <= 50000 and 1 <= ci <= bi - ai+1.
Output
The output contains exactly one integer equal to the minimal size of set Z sharing at least ci elements with interval [ai, bi], for each i=1,2,...,n.
Sample Input
53 7 38 10 36 8 11 3 110 11 1
Sample Output
6
Source
#include#include #define EM 300000#define VM 50005struct edge{ int v,w,next;}e[EM];int head[VM],ep;void addedge(int cu,int cv,int cw){ ep ++; e[ep].v = cv; e[ep].w = cw; e[ep].next = head[cu]; head[cu] = ep;}int maxn (int a,int b){ return a > b?a:b;}void spfa (int n){ int vis[VM],dis[VM],stack[EM]; memset (vis,0,sizeof(vis)); memset (dis,-1,sizeof(dis)); //for (int i = 0;i <= n;i ++) // dis[i] = inf; dis[n+2] = 0; int top = 1; vis[n+2] = 1; stack[0] = n+2; while (top) { int u = stack[--top]; vis[u] = 0; for (int i = head[u];i != -1;i = e[i].next) { int v = e[i].v; if (dis[v] < dis[u] + e[i].w) { dis[v] = dis[u] + e[i].w; if (!vis[v]) { vis[v] = 1; stack[top++] = v; } } } } printf ("%d\n",dis[n]);}int main (){ int n,v1,v2,m,cost; ep = 0; scanf ("%d",&n); m = n; memset (head,-1,sizeof(head)); int max = -1; while (m --) { scanf ("%d%d%d",&v1,&v2,&cost); addedge (v1,v2+1,cost); max = maxn (max,v2+1); } for (int i = 0;i < max;i ++) { addedge (i,i+1,0); addedge (i+1,i,-1); addedge (max+2,i,0); } spfa (max); return 0;}